Radio Frequency Magnetic Fields:

Effects / Volumes / Forces / Harms

Tobias Gilk - September 26, 2022

Rules of the Road

- Everything on the screen is for you (you can copy or take photos).
- If you have questions, ask!
- If you disagree, please speak up.

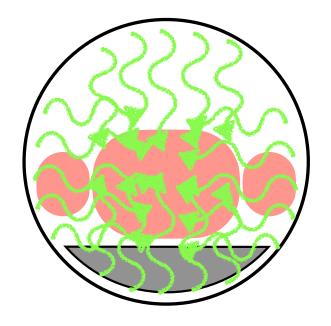
Outline

Radio Frequency Magnetic Fields

- Intro
- Fields / Distributions
- SAR / SED / B1_{+RMS}
- Levels & Labeling
- Heating & Burns
- Implant Scenarios
- Q & A

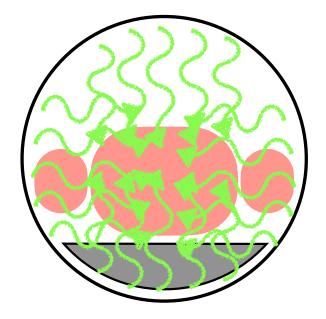
"If you don't know what you're exposing a patient (or device) to, you can't begin to perform an MR risk-assessment."

- Me


Recap & Advance

- When & Where
- Units & Measures
- Plots & Graphs

Radio Frequency (RF) Magnetic Fields What Are They?


- Rapidly fluctuating magnetic field
- Changing 1,000,000s of times per second (Hz)

- Because we need to energize materials, first, to get signal out of them we can read
- Larmor Frequency

When & Where?

- Only during active imaging
- Only in the bore
- But not uniform throughout the bore

Normal Mode

• ≤ 2.0 W/kg Whole Body Averaged (WBA) SAR

First Level Controlled **Operating Mode***

• ≤ 4.0 W/kg Whole Body Averaged (WBA) SAR

Second Level Controlled **Operating Mode**

 Whatever Your System Can Produce

201.3.208

FIRST LEVEL CONTROLLED OPERATING MODE

mode of operation of the MR EQUIPMENT in which one or more outputs reach a value that can cause physiological stress to PATIENTS which needs to be controlled by MEDICAL SUPERVISION

RF Magnetic Fields: Effects / Volumes / Forces Harms

Modes

Table 201.105 - SAR limits for volume transmit coils

Averaging time	6 min				
	WHOLE BODY SAR	PARTIAL BODY SAR	HEAD SAR		
Body region →	Whole body	Exposed body part	Head		
Operating mode ↓	(W/kg)	(W/kg)	(W/kg)		
NORMAL	2	2 - 10 a	3,2		
FIRST LEVEL CONTROLLED	4	4 – 10 a	3,2		
SECOND LEVEL CONTROLLED	>4	>(4 -10) a	>3,2		
MR EXAMINATION specific absorbed energy	The max. energy dose (SAR × examination time) shall be limited, subject to the RISK MANAGEMENT.				
Short duration SAR	The SAR limits over any 10 s period shall not exceed two times the stated values.				

The limit scales dynamically with the ratio "exposed PATIENT mass / PATIENT mass": NORMAL OPERATING MODE :

PARTIAL BODY SAR = 10 W/kg - (8 W/kg * exposed PATIENT mass / PATIENT mass)

FIRST LEVEL CONTROLLED OPERATING MODE :

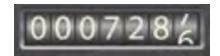
PARTIAL BODY SAR = 10 W/kg - (6 W/kg * exposed PATIENT mass / PATIENT mass)

Modes

Table 201	106 - SAR	limits for	local tr	ransmit coils

Averaging time Body region →	6 min LOCAL SAR				
	Operating mode ↓	(W/kg)	(W/kg)	(W/kg)	
NORMAL	10 a	10	20		
FIRST LEVEL CONTROLLED	20 a	20	40		
SECOND LEVEL CONTROLLED	>20 a	>20	>40		
Short duration SAR	The SAR limits over any 10 s period shall not exceed two times the stated values				

NOTE In cases where the orbit is in the field of a small LOCAL RF TRANSMIT COIL, care should be taken to ensure that the temperature rise is limited to 1 °C.


SAR - SED - B1+RMS

SAR (W/kg)

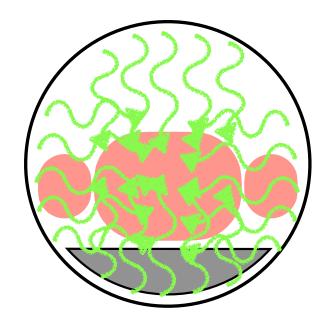
- Rate of delivered RF energy
- Think of it as the RF speedometer
- Averaged across body mass

SED (kJ/kg)

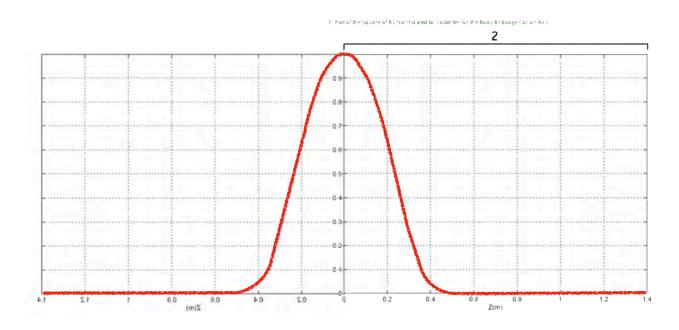
- Total quantity of delivered RF energy
- Think of it as the RF odometer
- Also averaged across body mass

 $B1_{+RMS} (\mu T)$

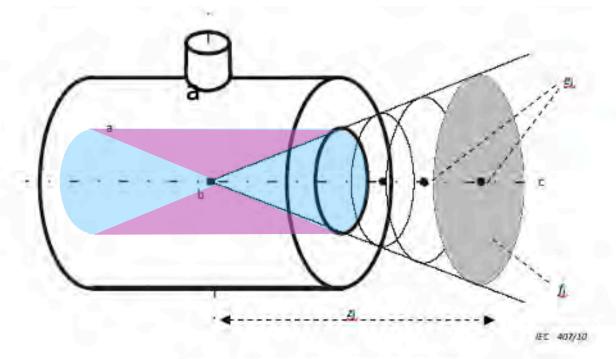
- Total delivered magnetic field energy
- Not averaged across body mass

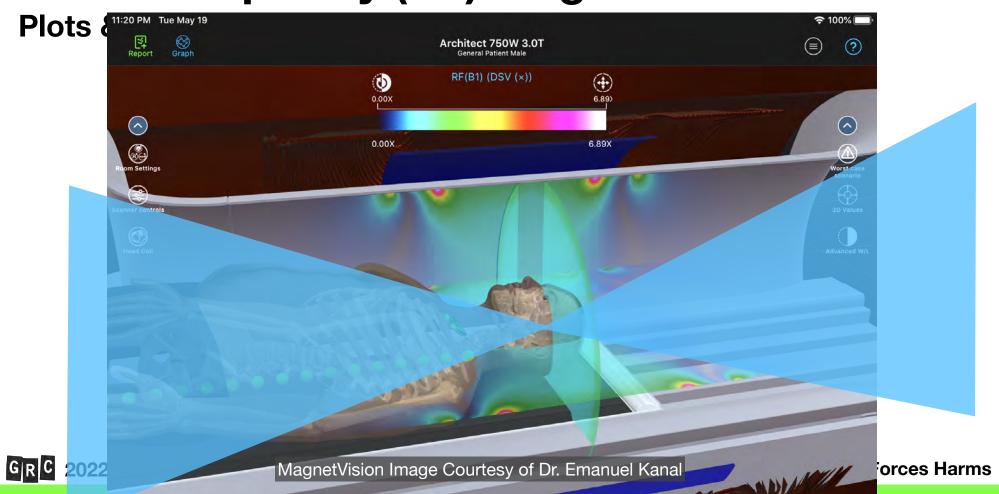

GRC 2022 Dubai Advanced MRI Safety Seminar

RF Magnetic Fields: Effects / Volumes / Forces Harms

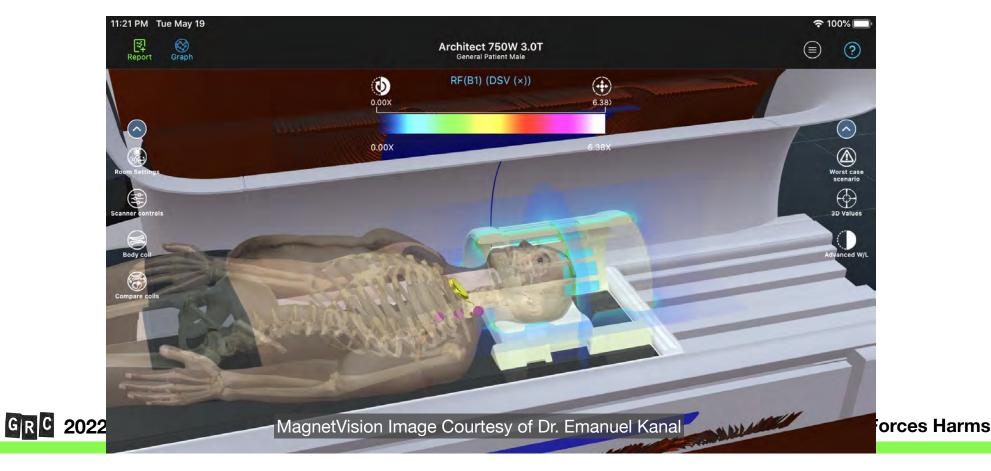

Quadrature / Circularly Polarized (CP)

Quadrature = Circularly Polarized


- Method of delivering RF energy by energizing RF transmit coil elements one at a time (typically following a four-step circular path)
- Linearly Polarized or RF Shimming are *not* Quadrature or CP



Plots & Graphs



Plots & Graphs

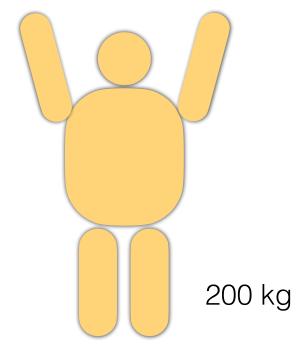
Plots & Graphs

Radio Frequency (RF) Magnetic Fields **Plots & Graphs**

Radio Frequency (RF) Magnetic Fields **Limitations of SAR**

Limitations of SAR

@ 2 W/kg


@ 2 W/kg

RF Magnetic Fields: Effects / Volumes / Forces Harms

Limitations of SAR

@ $2 W/kg \times 5 kg = 10 W$

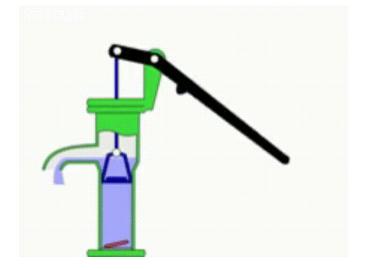
 $@ 2 W/kg \times 200 kg = 400 W$

RF Magnetic Fields: Effects / Volumes / Forces Harms

Faraday's Law of Induction

Faraday's Law of Induction

Ar electrical conductor exposed to a changing magnetic field will experience an induced electrical voltage.



Faraday's Law of Induction

Time-Varying Gradients
1,000's of times per second

RF Magnetic Fields 1,000,000's of times per second

GRC 2022 Dubai Advanced MRI Safety Seminar

RF Magnetic Fields: Effects / Volumes / Forces Harms

Physical & Physiological Effects

Radio Frequency (RF) Magnetic Fields **Physical Effects**

- Induced Voltages
- Heating

Induced Voltages

- At RF Amplitudes & Frequencies, Induced Voltages Are Mostly 'Transparent' (Very Little Direct Physiologic Effect)
- But They Also Produce Heat... Lots Of Heat

There are three most-common ways for RF power to create a burn...

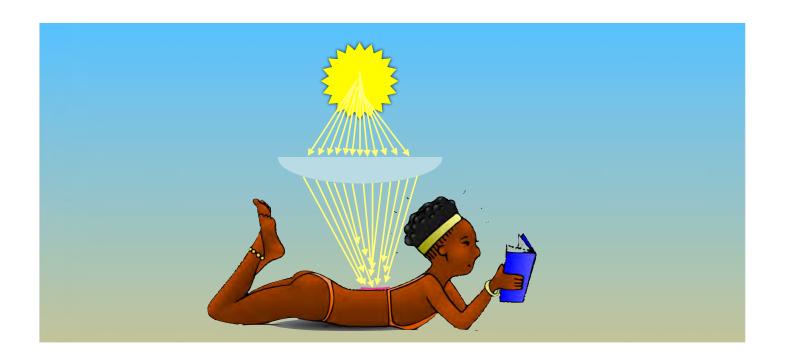
- Near-Field / Proximity Burn
- Large-Calibre Body Loop
- **Resonant Circuit**

The Following Images May Be Upsetting

Burns (1st & 2nd Degree)

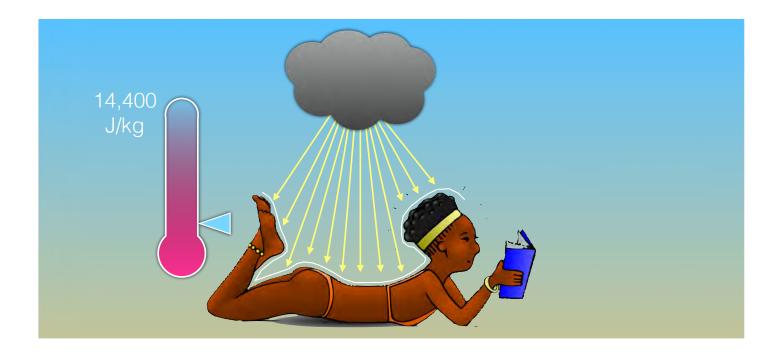
Burns (3rd Degree)

Physical / Physiologic Effects


Diffuse Thermal Loading (What SAR Is Actually Good At...)

Focal Heating

Physical / Physiologic Effects


Physical / Physiologic Effects

Physical / Physiologic Effects

Radio Frequency (RF) Magnetic Fields Why SED Is Dumb...

The Problem With Leads

- Voxels Of Deposition
- Magnetism & Electricity: Conjoined Twins
- Insulation & 'Who Is In The Driver's Seat?'

Radio Frequency (RF) Magnetic Fields **Voxels Of Deposition**

- MR System Controls Are Based On Exposure To Human Beings
- What Happens When There's Something Other Than Human Tissues w/in Volume of Deposition?

The Conjoined Twin Conundrum

- Enters As Magnetism
- **Encounters Good Electrical Conductor**
- Switches To Electricity

Insulation & 'Who Is In The Driver's Seat?'

- Magnetism Passes Through Electrical Insulation
- Enters Lead (Designed To Be Electrically Conductive)
- Electricity In Driver's Seat
- Can't Exit Through Insulation

Insulation & 'Who Is In The Driver's Seat?'

- Capped Leads May Exacerbate Problem
 - Only Half As Many Ways Out

Current Back To Pulse Generator

Devices With Leads

Current To Organ / Structure

Devices With Leads

"Think Like An Electron"

- Because Of Faraday's Law, RF Energy In Patient Tissues Wants To Behave Like Electricity...
 - Electrical Conductors = Deaths (Path of Least Resistance)
 - Path To Form A Circle... I Mean Circuit

"Think Like An Electron"

Large Caliber Body Loops

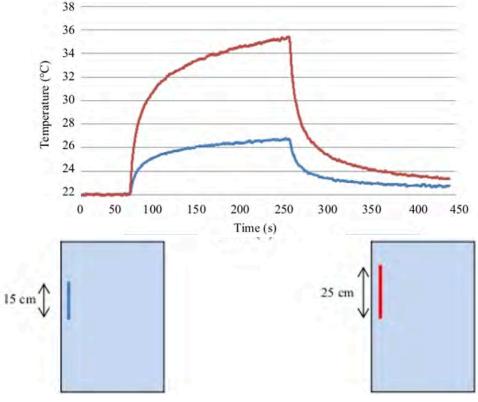
"Think Like An Electron"

Electrically Conductive Materials

"Think Like An Electron"

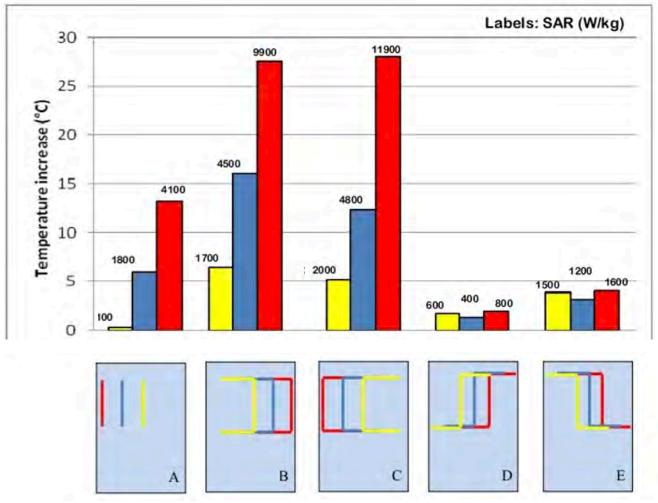
Resonant Circuit

"Think Like An Electron"


- **Resonant Circuit**
 - 'Worst Case' Lengths For Linear Conductors = 1/2 Wavelength
 - 3.0 T 12 15 cm
 - 1.5 T 25 30 cm
 - 1.0 T 37 45 cm
 - 0.55 T 67 82 cm
 - 0.064 T 5.75 7.0 m 4

i.e. Siemens Max

i.e. Hyperfine Swoop


"Think Like An Electron"

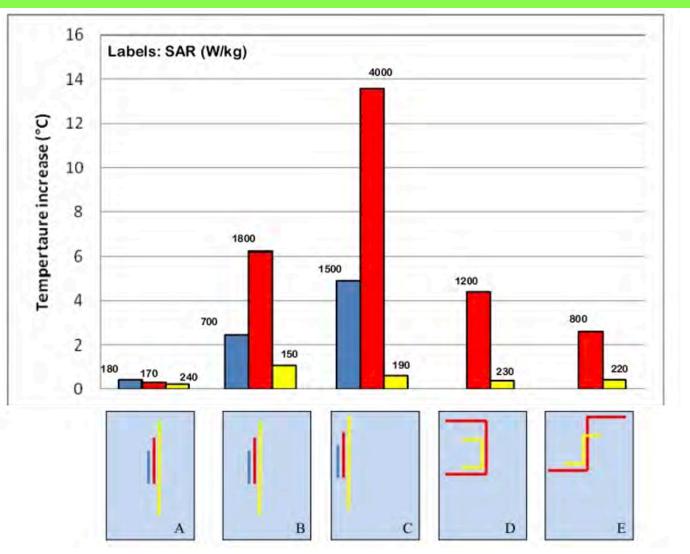
- **Resonant Circuit**
- 1.5 T

Radio Freque "Think Like An Elec

Resonant Circuit

https://link.springer.com/content/pdf/10.1186/1475-925X-7-11.pdf

Radio Freque


"Think Like An Elect

1.5 T

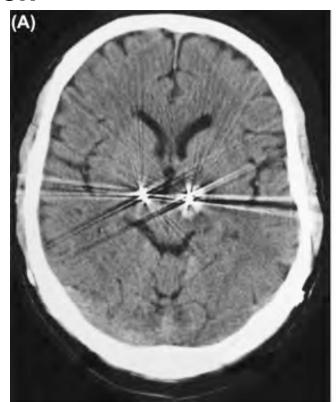
15 cm

25 cm

45 cm

GRC 2022 Dubai Advanced MRI Safety Seminar

RF Magnetic Fields: Effects / Volumes / Forces Harms

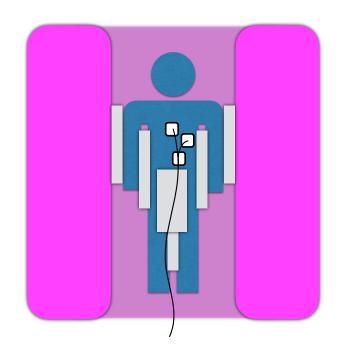

"Think Like An Electron"

- **Resonant Circuit**
 - 'Worst Case' Lengths For Linear Conductors = 1/2 Wavelength
 - 3.0 T 12 15 cm
 - 1.5 T 25 30 cm
 - 1.0 T 37 45 cm
 - 0.55 T 67 82 cm
 - 0.064 T 5.75 7.0 m

"Think Like An Electron"

- DBS (bilateral)
- One extended lead
- L-Spine Study

Radio Frequency (RF) Magnetic Fields **How We Manage RF Risks**


- Positionally
- "Collimation" (Local T/R Coil Use)
- RF Settings

Radio Frequency (RF) Magnetic Fields **How We Manage RF Risks**

- Positionally
 - If The Object Of Concern Is Wholly Outside The RF Body Coil Transmitter & Receiving No Incident RF Energy (Consider Electrical Pathways), What Risk Is There?

How We Manage RF Risks

- **Padding**
 - Patient From Bore Wall (Body Coil)
 - Patient From Own Tissues
 - Patient From Electrical Conductors

How We Manage RF Risks

- "Collimation"
 - If You Can Limit The Volume Of RF Irradiation By Using A Local T/R Coil...

Radio Frequency (RF) Magnetic Fields **How We Manage RF Risks**

- RF Settings
 - If You Can 'Dial-Back' SAR / B1+RMS To Acceptable Values (For Both Heating Risk & Image Quality...)

Radio Frequency (RF) Magnetic Fields **How We Manage RF Risks**

- ScanWise (Philips)
 - Allows For Control Of Level Of RF Output
 - Not Positionally Aware
- MR Output Conditioning (MROC)

Q&A

Thank You

Tobias Gilk, MRSO, MRSE

- TGilk@GilkRadiologyConsultants.com
- @tobiasgilk
- www.facebook.com/groups/MRIsafety

